Livresup

Download ebooks gratuit

Home » , » Convex Optimization

Convex Optimization

           Convex Optimization






Sommaire                                         

1.1 Mathematical optimization

1.2 Least-squares and linear programming
1.3 Convex optimization
1.4 Nonlinear optimization
1.5 Outline
1.6 Notation
Bibliography
I Theory 19
2 Convex sets 21
2.1 Affine and convex sets
2.2 Some important examples
2.3 Operations that preserve convexity
2.4 Generalized inequalities
2.5 Separating and supporting hyperplanes
2.6 Dual cones and generalized inequalities
Bibliography
Exercises
3 Convex functions 
3.1 Basic properties and examples 
3.2 Operations that preserve convexity 
3.3 The conjugate function 
3.4 Quasiconvex functions 
3.5 Log-concave and log-convex functions
3.6 Convexity with respect to generalized inequalities 
Bibliography 
Exercises 
viii Contents
4 Convex optimization problems
4.1 Optimization problems 
4.2 Convex optimization
4.3 Linear optimization problems
4.4 Quadratic optimization problems
4.5 Geometric programming
4.6 Generalized inequality constraints
4.7 Vector optimization
Bibliography
Exercises
5 Duality
5.1 The Lagrange dual function 
5.2 The Lagrange dual problem 
5.3 Geometric interpretation 
5.4 Saddle-point interpretation 
5.5 Optimality conditions 
5.6 Perturbation and sensitivity analysis 
5.7 Examples 
5.8 Theorems of alternatives 
5.9 Generalized inequalities 
Bibliography .
Exercises 
II Applications
6 Approximation and fitting
6.1 Norm approximation .
6.2 Least-norm problems 
6.3 Regularized approximation 
6.4 Robust approximation 
6.5 Function fitting and interpolation 
Bibliography 
Exercises 
7 Statistical estimation
7.1 Parametric distribution estimation 
7.2 Nonparametric distribution estimation 
7.3 Optimal detector design and hypothesis testing 
7.4 Chebyshev and Chernoff bounds 
7.5 Experiment design 
Bibliography
Exercises 
Contents ix
8 Geometric problems 
8.1 Projection on a set .
8.2 Distance between sets
8.3 Euclidean distance and angle problems 
8.4 Extremal volume ellipsoids 
8.5 Centering 
8.6 Classification 
8.7 Placement and location 
8.8 Floor planning 
Bibliography 
Exercises 
III Algorithms 
9 Unconstrained minimization 
9.1 Unconstrained minimization problems 
9.2 Descent methods 
9.3 Gradient descent method 
9.4 Steepest descent method 
9.5 Newton’s method 
9.6 Self-concordance 
9.7 Implementation 
Bibliography 
Exercises 
10 Equality constrained minimization 
10.1 Equality constrained minimization problems 
10.2 Newton’s method with equality constraints 
10.3 Infeasible start Newton method 
10.4 Implementation 
Bibliography 
Exercises 
11 Interior-point methods 
11.1 Inequality constrained minimization problems 
11.2 Logarithmic barrier function and central path 
11.3 The barrier method 
11.4 Feasibility and phase I methods 
11.5 Complexity analysis via self-concordance 
11.6 Problems with generalized inequalities 
11.7 Primal-dual interior-point methods 
11.8 Implementation 
Bibliography 
Exercises 
x Contents
Appendices 
A Mathematical background
A.1 Norms
A.2 Analysis
A.3 Functions 
A.4 Derivatives 
A.5 Linear algebra 
Bibliography 
B Problems involving two quadratic functions 
B.1 Single constraint quadratic optimization 
B.2 The S-procedure 
B.3 The field of values of two symmetric matrices 
B.4 Proofs of the strong duality results
Bibliography 
C Numerical linear algebra background 661
C.1 Matrix structure and algorithm complexity
C.2 Solving linear equations with factored matrices 
C.3 LU, Cholesky, and LDLT factorization 
C.4 Block elimination and Schur complements 
C.5 Solving underdetermined linear equations  

                                                                     

SHARE

About antop

0 التعليقات :

Enregistrer un commentaire

creation site web maroc